Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	B E – CIVIL ENGINEERING					
Semester :	6					
Course Code:	17CV63					
Course Title:	HIGHWAY ENGINEERING					
Credit / L-T-P:	4/4-0-0					
Total Contact Hours:	50					
Course Plan Author:	RAMYA B					

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	<u>3</u>
1. Course Overview	3
2. Course Content	3
3. Course Material	
4. Course Prerequisites	<u>5</u>
5. Content for Placement, Profession, HE and GATE	
B. OBE PARAMETERS	
1. Course Outcomes	
2. Course Applications	<u>6</u>
3. Articulation Matrix	
4. Curricular Gap and Content	
C. COURSE ASSESSMENT	
1. Course Coverage	7
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	7
<u>Module – 2</u>	
<u>E1. CIA EXAM – 1</u>	
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	10
<u>Module – 3</u>	10
<u>Module – 4</u>	11
<u>E2. CIA EXAM – 2</u>	12
a. Model Question Paper - 2	12
<u>b. Assignment – 2</u>	
D3. TEACHING PLAN - 3	13
<u>Module – 5</u>	
<u>E3. CIA EXAM – 3</u>	
a. Model Question Paper - 3	
<u>b. Assignment – 3</u>	14
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
Course Outcome Computation	
Academic Year:	
Odd / Even semester	<u>18</u>

A. COURSE INFORMATION

1. Course Overview

Degree:	B.E	Program:	CIVIL ENGINEERING
Semester:	6	Academic Year:	2018-19
Course Title:	Highway Engineering	Course Code:	15cv63
Credit / L-T-P:	4/4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	1 / Module
Course Plan Author:	RAMYA B	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : 70%	SEE Target:	67%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Мос	Content	Teaching Hours	
ule		i e ciel i i g i i e ci e	Levels
	Principles of Transportation Engineering: Importance of transportation,Different modes of transportation and comparison, Characteristics of road transport Jayakar committee recommendations, and implementation – Central Road Fund, Indian Roads Congress, Central Road Research Institute Highway Development and Planning: Road types and classification, road patterns, planning surveys, master plan – saturation system of road planning, phasing road development in India, problems on best alignment among alternate proposals Salient Features of 3rd and 4thtwenty year road development in India (NHDP & PMGSY) and in Karnataka (KSHIP & KRDCL) Road development plan-vision 2021.		L2
2	 Highway Alignment and Surveys: Ideal Alignment, Factors affecting the alignment, Engineering surveys-Map study, Reconnaissance, Preliminary and Final location & detailed survey, Reports and drawings for new and re-aligned projects Highway Geometric Design: Cross sectional elements-width, surface, camber, Sight distances-SSD, OSD, ISD, HSD, Design of horizontal and vertical alignment-curves, super-elevation, widening, gradients, summit and valley curves 		L4
3	Pavement Materials: Subgrade soil - desirable properties- HRB soil classification-determination of CBR and modulus of subgrade reaction with Problems Aggregates- Desirable properties and tests, Bituminous materials- Explanation on Tar, bitumen, cutback and emulsion-tests on bituminous material Pavement Design: Pavement types, component parts of flexible and rigid pavements and their functions, ESWL and its determination (Graphical method only)-Examples		L4
4	Pavement Construction: Design of soil aggregate mixes by Rothfuch's method. Uses and properties of bituminous mixes and cement concrete in pavement construction. Earthwork; cutting and Filling, Preparation of subgrade, Specification and construction of i) Granular Sub base, ii) WBM Base, iii) WMM base, iv) Bituminous Macadam, v) Dense		L3

	Bituminous Macadam vi) Bituminous Concrete,		
	vii) Dry Lean Concrete sub base and PQC viii) concrete roads		
5	Highway Drainage: Significance and requirements, Surface	10	L4
	drainage system and design-Examples, sub surface drainage		
	system, design of filter materials, Types of cross drainage		
	structures, their choice and location		
	Highway Economics: Highway user benefits, VOC using		
	charts only-Examples, Economic analysis - annual cost		
	method-Benefit Cost Ratio method-NPV-IRR methods-		
	Examples, Highway financing-BOT-BOOT concepts		
-	Total	50	

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

3. 1.030	arch. Recent developments on the concepts – publications in journals, co		5 010.
Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3,	S K Khanna and C E G Justo, " Highway Engineering", Nem Chand Bros,	1,3, 4	In Lib
1.0	Roorkee		
	L R Kadiyali, "Highway Engineering", Khanna Publishers, New Delhi.	4, 6	In Lib
	R Srinivasa Kumar, "Highway Engineering", University Press.	6,7	Not available
2, 3,4	K.P.subramanium, "Transportation Engineering", SciTech Publications, Chennai	6,8	Not available
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
3,4	Specifications for Roads and Bridges-MoRT&H, IRC, New Delhi.	3,4	Not available
1, 2,3	C. JotinKhisty, B. Kent lal, "Transportation Engineering", PHI Learning Pvt. Ltd. New Delhi.		Not available
С	Concept Videos or Simulation for Understanding	-	-
C1	https://nptel.ac.in/courses/105101087/		
C2	https://www.youtube.com/watch?		
	v=5zKC_aq4ypM&list=PLE88643285BC70E0F		
C3	https://www.youtube.com/watch?v=tIkBEky7WsY		
C4	https://www.youtube.com/redirect?q=http%3A%2F %2Fnptel.iitm.ac.in&event=video_description&v=YAEyLOCU- 8I&redir_token=Zm82kES57QKb5c2O6fGA1wxhBe58MTU1NTIzNDAxOE AxNTU1MTQ3NjE4		
C5	https://www.youtube.com/redirect?q=http%3A%2F %2Fnptel.iitm.ac.in&v=wSp3BPaSMRo&redir_token=PaBLx_T_sngphXZj- 1006vh3au58MTU1NTIzNDA0OEAxNTU1MTQ3NjQ4&event=video_descri ption		
D	Software Tools for Design	-	-
Е	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Stude	Students must have team the following Courses / Topics with described Content											
Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms						
ules	Code					Level						

Students must have learnt the following Courses / Topics with described Content

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms
ules				Level

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod	Course	Course Outcome		Instr Method	Accoccmo	Blooms'
				instrimethou		
ules	Code.#	At the end of the course, student			nt	Level
	0.0.0	should be able to			Method	
1	15cv63.1	The student should be able to	05	Lecture	Internal	L2
		understand the Principles of			test	
		Transportation Engineering			Assignme	
					nt	
1	15cv63.2	The student should be able to	05	Lecture	Internal	L2
		understand Highway planning and			test	
		development considering			Assignme	
		engineering and financial aspects,			nt	
		regulations and policies, socio				
		economic impact				
2	15cv63.3	The students should be able to	05	Lecture	Internal	L3
		Acquire the capability of proposing			test	
		a new alignment and re-alignment			Assignme	
		of existing roads			nt	
2	15cv63.4	The student should be able to	05	Lecture	Internal	L4
		design the geometric elements of			test	
		a highway network			Assignme	
					nt	
3	15cv63.5	The student should be able to	05	Lecture	Internal	L3
		Evaluate the engineering			test	
		properties of the materials and			Assignme	
		suggest the suitability of the same			nt	
		for pavement construction				
3	150v63.6	The student should be able to	05	Lecture	Internal	L4
		understand pavement its			test	
		components and requirements			Assignme	
					nt	
4	15cv63.7	The student should be able to	10	Lecture	Internal	L3
		understand the various pavement			test	

		construction activities			Assignme nt	
5	15CV63.8	The student should be able to understand the drainage system for a highway	05	Lecture	Internal test Assignme nt	L3
5		The student should be able to Evaluate the highway economics by select methods and understand the basic knowledge of various highway financing concepts.	05	Lecture	Internal test Assignme nt	L4
-	-	Total	50	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Highway planning and development	CO1	L2
2	Highway Geometric Design	CO2	L4
3	Laboratory investigation for Pavement Materials	CO3	L2
4	Pavement Design and construction	CO4	L3
5	Designing Highway and Drainage System	CO5	L3
6	Evaluating the highway economics	CO6	L4

3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes						rogi										-
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1																		
2																		
3																		
4																		
5																		
-	15EE662.	Average																-
-	PO, PSO	1.Engineering Knowledge; 2.Prob	lem	Ar	naly	sis;	3.Ľ	Desi	ign	/	Dev	ielo	pm	ent	of	So	luti	ons;
		4.Conduct Investigations of Compl	lex i	Prol	bler	ns;	5.M	ode	ern T	Τοοι	l Us	sage	e; 6.	The	e En	igine	er	and
		Society; 7.Environment and Si	usto	aina	bilit	у;	8.E	thic	S;	9.lr	ndiv	viđu	al	an	d	Теа	mw	ork;
		10.Communication; 11.Project N											Life	e-lo	ng	Le	arn	ning;
		S1.Software Engineering; S2.Data E	Base	e Mo	ana	gen	nen	t; S3	3.We	eb [Des	ign	-		-			

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1		Seminar	2 nd week / date	Dr XYZ, Inst	List from B4 above
2		Seminar	3 rd Week		ubove

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

-	Total	50	4	4	4	5	5	10	-	-
-	Economics				T	-	-	-		
5	Highway Drainage, Highway	10	-	-	4	1	1	2	CO5	L4
4	Pavement Construction	10	-	2	-	1	1	2	CO4	L3
U U	Pavement Materials, Pavement Design	10	-	2	-	1	1	2	CO3	L4
	Highway Alignment and Surveys, Highway Geometric Design	10	2	-	-	1	1	2	CO2	L3
	Principles of Transportation Engineering, Highway Development and Planning:		2	-	-	1	1	2	CO1	L2
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra Asg	SEE		
Mod		Teach.			f quest				CO	Levels

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	15	CO1, CO2,	L2,L3
	CIA Exam – 2	15	CO3,CO4	L2, L4
5	CIA Exam – 3	15	CO4 ,CO5,CO6	L4
	Assignment - 1	05	CO1, CO2,	L2, L3,
	Assignment - 2	05	CO3,CO4	L2, L3
5	Assignment - 3	05	CO4 ,CO5,CO6	L3, L4
-	Seminar - 1		_	-
3, 4	Seminar - 2		_	-
5	Seminar - 3		_	-
1, 2	Quiz - 1			-
	Quiz - 2		-	-
5	Quiz - 3			-
1 - 5	Other Activities – Mini Project	-		
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:		Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
	The student should be able to:		
1	Analyze the planning process required by Identifying different highway system for different category of traffic	CO1	L2
b	Course Schedule	-	-

Class No	Portion covered per hour	-	-
1	Importance of transportation, Different modes of transportation and comparison	CO1	L2
2	Characteristics of road transport Jayakar committee recommendations,	CO1	L2
3	implementation – Central Road Fund, Indian Roads Congress, Central Road Research Institute		L2
4	Road types and classification, road patterns, planning surveys	CO1	L2
5	saturation system of road planning phasing road development in India	CO1	L2
6	problems on best alignment among alternate proposals Salient Features of 3rd and 4thtwenty year road development plans and Policies	CO1	L2
7	Present scenario of road development in India (NHDP & PMGSY)	CO1	L2
8	Road development plan - vision 2021	CO1	L2
С	Application Areas		
-	Students should be able employ / apply the Module learnings to \ldots		
1	Highway Planning	CO1	L2
2			
d	Review Questions		
-			
1	Explain Scope of Highway planning	CO1	L2
2	Road types and classification	CO1	L2
3	Calculation of road Road length	CO1	L3
е	Experiences	-	_
1		CO1	L2
2			

Title:		Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	The student should be able to:	-	Level
1	The students should be able to Acquire the capability of proposing a new alignment and re-alignment of existing roads	CO1	L3
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Ideal Alignment, Factors affecting the alignment, Engineering surveys-Map study	CO2	L3
2	Reconnaissance, Preliminary and Final location & detailed survey,	CO2	L3
3	Reports and drawings for new and re-aligned projects	CO2	L3
4	Cross sectional elements–width, surface, camber, Sight distances	CO2	L3
5	SSD, OSD, ISD, HSD	CO2	L3
6	Design of horizontal and vertical alignment–curves,	CO4	L3
7	super-elevation, widening	CO3	L3
8	gradients, summit and valley curves	CO3	
9	Problems on SSD, OSD, ISD, HSD	CO4	
10	Problems on SSD, OSD, ISD, HSD	CO4	
С	Application Areas	-	-

Students should be able employ / apply the Module learnings to	-	-
Traffic volume count	CO2	L3
Zoning	CO2	L4
Review Questions	-	-
Explain with near sketches the various factors controlling the alignment	CO2	L2
What are the objectives of preliminary survey for highway alingment	CO2	L3
Derive an expression for finding the extra widening required on horizontal	CO3	L3
curve		
The speeds of overtaking and over taken vesicles are 70kmph and 40kmph	CO3	L4
respectively on a two way traffic road. The average acceleration during		
overtaking may be assumed as 0.99m/sec ² calculate safe overtaking sight		
distance and show the details of overtaking zone with sketches		
Briefly explain how MAP study is helpful in the alignment of new highway	CO2	L2
Experiences	-	-
	CO2	L2
	Traffic volume count Zoning Review Questions Explain with near sketches the various factors controlling the alignment What are the objectives of preliminary survey for highway alingment Derive an expression for finding the extra widening required on horizontal curve The speeds of overtaking and over taken vesicles are 70kmph and 40kmph respectively on a two way traffic road. The average acceleration during overtaking may be assumed as 0.99m/sec ² calculate safe overtaking sight distance and show the details of overtaking zone with sketches Briefly explain how MAP study is helpful in the alignment of new highway	Traffic volume countCO2ZoningCO2Review Questions-Explain with near sketches the various factors controlling the alignmentCO2What are the objectives of preliminary survey for highway alingmentCO2Derive an expression for finding the extra widening required on horizontalCO3curveThe speeds of overtaking and over taken vesicles are 70kmph and 40kmphCO3respectively on a two way traffic road. The average acceleration during overtaking may be assumed as 0.99m/sec² calculate safe overtaking sight distance and show the details of overtaking zone with sketchesCO2Briefly explain how MAP study is helpful in the alignment of new highwayCO2Experiences-

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Code	e:	17CV63	Sem:	VI	Marks:	30	Time:	75	MINUTE	ËS	
Cour	se:	Highway er	gineering				I.				
-	-			FULL que	stion from ea	ch part,	all questions	carry	Marks	CO	Level
		equal mark									
1	а	Explain hov	v the whe	el load and	t its repetition	of loads	effects the CC	2	07	CO1	L2
	b	Write the re	equiremer	nts of the jo	oints in CC pav	ements			08	CO3	L2
					OR						
2	а	Write in brie –2002	ef about tl	ne Design	procedure of C	C.C. Pave	ment as per IF	RC: 38	07	CO4	L2
	b				he mechanisr ey strata. Indica				08	CO2	L2
3	а		v	<u> </u>	ctor method \				07	CO1	L2
	b	Define furn	iess meth	od of Trip	Distribution w	ith equa	ation		08	CO2	L2
					OR						
4	а	Explain wit alignment	h near sk	etches the	e various facto	ors contro	olling the		07	CO1	L2
	b	What are tl	he object	ives of pre	eliminary surv	ey for hi	ghway alingr	nent	08	CO2	L2
		Derive an e horizontal (n for findin	ig the extra w	dening i	required on		7	CO3	L3

b. Assignment -1

			Mc	odel Assi	gnment	Question	S				
Crs Code:	17cv63	Sem:	VI	Ma	rks:	5 / 10	Time:	9	0 – 120 r	ninute	S
		engineering									
Note: Each	student	to answer 2-				•	arries equa	al mar	k.		
SN	0		A	ssignme	ent Desc	ription			Marks	со	Level
1		What is a a Ideal align	0	nt? And	explain	the requ	uirements	of ar	n 06	CO2	
2		Explain t alignment						hway		CO2	
3		Explain th economy (isportat	ion in d	leveloping	g the	e 07	CO1	
4		The area with popu of NH, SH,	lation gr	reater th	nan 500	0. Calcu	late the le	ength		CO2	
5		Classify t function a				ased on	location	anc	06	CO2	
6		The area with popu of NH, SH,	lation gr	reater th	nan 500	0. Calcu	late the le	ength		CO2	
7		Compa				^f eatures ortation.	of differe	ent	07	CO1	

D2. TEACHING PLAN - 2

Title:		Appr Time:	10 Hrs
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	The student should be able to understand pavement its components and requirements	CO3	L3
b	Course Schedule		
Class No	p Portion covered per hour	-	-
1	Subgrade soil - desirable properties	CO3	L3
2	HRB soil classification-determination of CBR	CO3	L3
3	modulus of subgrade reaction with Problems	CO3	L3
4	modulus of subgrade reaction with Problems	CO3	L3
5	Aggregates- Desirable properties and tests, Bituminous materials	CO3	L3
6	Explanation on Tar, bitumen, cutback and emulsion	CO3	L3
7	tests on bituminous material	CO3	L3
8	Pavement types, component parts of flexible and rigid pavements and their functions	CO4	L3
9	component parts of flexible and rigid pavements and their functions conti-	CO4	L3
10	ESWL and its determination (Graphical method only)-Examples	CO4	L4
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Highway materials and planning	CO3	L4

d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Distinguish between i(tar and bitumen	CO3	L2
	ii(cut back and emulsion		
2	What are the desirable properties of sub grade? Enumerate the identification and classification tests of soil	CO3	L2
3	What are the desirable properties of aggregates? What test are conducted for judging the desirable properties? mention the significant of each test		L2
4	Briefly explain the role of pavement surface characteristics in highway geometric design	CO3	L3
5	List and explain various factors to be consider for pavements	CO3	L3
6.	A Load penetration values of CBR tests conducted on a specimen of a soil sample are given below. Determine the CBR value of soil if 100 divisions of load represents 190kg and in the calibration chart of proving ring load dial readings , 0,8, 15,23,29,34,37,43,48,57,63,67		l4
е	Experiences	-	
1		CO3	L2
2			

	•		
Title:	Data Transmission and Telemetry	Appr	10 Hrs
	Measurement of Non – Electrical Quantities	Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Distribute the trips by considering the travel demand modeling, desire line diagram for generated trips	CO4	L3
b	Course Schedule		
	Portion covered per hour	-	-
1	Design of soil aggregate mixes by Rothfuch's method.	CO3	L3
2	Uses and properties of bituminous mixes and cement concrete in pavement construction.		L3
3	Uses and properties of bituminous mixes and cement concrete in pavement construction.	CO3	L3
4	Earthwork; cutting and Filling	CO4	L3
5	Preparation of subgrade,	CO4	L3
6	Preparation of subgrade,	CO4	L3
7	Specification and construction of i) Granular Sub base, ii) WBM Base,	CO4	L3
8	ii) WMM base, iv) Bituminous Macadam	CO4	L3
9	v) Dense Bituminous Macadam vi) Bituminous Concrete,	CO4	L3
10	vii) Dry Lean Concrete sub base and PQC viii) concrete roads	CO4	L3
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Road construction	CO4	L3
2	Sub base and sub grade soil	CO3	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	List the desirable properties of road aggregate and Explain any two	CO3	L3

2	 The radius of a horizontal circular curve is 10 0 meters. The design speed is 50 kmph and the design co efficient of lateral friction is 0.15 1) Calculate the superelevation required if full lateral friction is assumed to develop Calculate the co efficient of lateral friction needed if no superelevation is provided 		L4
3	Describe how the quality of toughness and hardness of aggregates is evaluated in the lab	CO3	L3
4	List the various tests conducted on bitumen and explain any two	CO3	L3
5	Explain the desirable properties of subgrade soil	CO3	L3
6	Write a note on CBR	CO3	L3
7	A plate load test was conducted on a soaked subgrade during monsoon season using a plate diameter of 30 cm. The load values corresponding to the mean settlement dial readings are given below. Determine the modulus of subgrade reaction for the standard plate.	CO4	L4
8	Enumerate the steps for the determination of modulus of subgrade reaction and for making corrections for plate size	CO4	L3
е	Experiences	-	-
1	•	CO4	L3
2			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs Code	e:	17CV63	Sem:	VI	Marks:	80	Time	75 Minute	S	
Cour	se:	Highway en								
-	-	Note: Answ	er all quest	ions, each c	arry equal	marks. Mod	lule : 3, 4	Marks	со	Level
	1				ghness and	l hardness	of aggregat	es 05	CO3	L3
		is evaluate		-				06		
	2	List the var	List the various tests conducted on bitumen and explain any two Explain the desirable properties of subgrade soil						CO4	L3
	3	Explain the	e desirable	properties	of subgrad	le soil		05	CO3	L3
	4	Write a not	te on CBR					06	CO3	L3
	5	monsoon s correspond	A plate load test was conducted on a soaked subgrade during monsoon season using a plate diameter of 30 cm. The load values corresponding to the mean settlement dial readings are giver pelow. Determine the modulus of subgrade reaction for the							L4
	6			for the deting correcti			us of subgra	de 06	CO3	L3
	7	Briefly expla	ain the diffe	rent types of	fpavement	constructio	n	05	CO4	L3
	8	Write a shoi	a. bitu	minous mac ninous concr e coat				06	CO5	L3
	9.	explain th	e significa	ance of ES	WL in pav	ement de	sign	05	CO5	L3

b. Assignment – 2

			Мс	del Assignme	nt Questior	IS			
Crs Code:	17CV63	Sem:	VI	Marks:	5/10	Time:	75minute	es	
Course:	High way	/ engineeri	ng						
SN	lo		A	ssignment De	escription		Marks	СО	Level
1		Explain th	ne desirab	le properties	s of subgra	de soil	05	CO3	L3
2	1	· ·	ote on CB		0		05	CO3	L3
3	1	during m The load dial readi	onsoon se values ce ngs are g	vas conducte eason using a prresponding iven below. I for the stanc	a plate dia g to the m Determine	meter of 30 ean settlem	cm. Ient	CO4	L4
4		Enumera	te the ste ade reac	eps for the c tion and for	leterminati			CO3	L3
5	5	List the Explain a		properties	of road a	aggregate a	and 05	CO3	L3
6	i	The desig of lateral 1) lat	gn speed friction is Calculate eral friction the co e	e the super on is assume fficient of lat	and the development of the devel	sign co effici required if op	full	CO4	L4
7	,	Describe	how the	quality of to lated in the l	•	nd hardness	s of 05	CO3	L4
8	}			ts conducte		nen and exp	lain 06	CO3	L3
9			ne desirat	le properties	s of subgra	ade soil	05	CO3	L3

D3. TEACHING PLAN - 3

-			1
Title:	Loop and Horn Antenna and Antenna Types	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Highway drainage	CO5	L3
2	Highway economics	CO6	L4
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Significance and requirements, Surface drainage system and design	CO5	L3
2	Examples	CO5	L4
3	Examples	CO5	L4
4	sub surface drainage system, design of filter materials	CO5	L3
5	Types of cross drainage structures, their choice and location	CO5	L3
6	Highway user benefits	CO5	L3
7	VOC using charts only-Examples	CO5	L4
8	Economic analysis - annual cost method-Benefit Cost Ratio	CO6	L4
9	method-NPV-IRR methods- Examples,	CO6	L4

10	Highway financing-BOT-BOOT concepts	CO6	L4
•	Application Areas		
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1.	Highway drainage	CO5	
2.	Highway economics	CO6	
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1.	What are the requirements of highway drainage system	CO5	
2.	Describe various methods of economics analysis of a highway	CO6	
3.	Compare the annual costs of two types of pavement structures i(WBM with thin bituminous surface at total cost of rs 2.2 lakhs per km, life of 5 years, inetrest at 10%salvage value of rs 0.9 lakhs after 5 years annual average maintenance cost of rs 0.35 lakhs per km and ii(bituminous macadam and bituminous concrete surface total cost of rs 4.2 lakhs per km,life of 15 years, interest at 8%salvage value of 2 laks at the end of 15 years annual average maintenance cost rs 0.25 lakhs per km	CO6	
4.	Discuss the various components of quantifiable and non quantifiable benefits to the road users due to highway development	CO5	
е	Experiences	_	_
1		CO5	L4
2		CO6	

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code	17cv63	Sem:	VI	Marks:	100	Time:			
Cour	se:	Highway	engineering	j	1		l			
-	-	Note: Ans	swer all que	estions, ea	ich carry equa	al marks. M	1odule : 5	Marks	СО	Level
	1	What are	the require	ments of	highway draina	age systen	n			
	2	Describe	various met	hods of e	conomics anal	ysis of a hi	ighway			
		with thin years, ine average macadan km,life of	bituminous etrest at 109 maintenanc n and bitum 15 years, ir	surface a %salvage v e cost of ninous cor nterest at	It total cost of value of rs 0.g rs 0.35 lakhs increte surface	rs 2.2 lakh) lakhs aft ; per km total cost ue of 2 lak	structures i(WF ns per km, life o er 5 years ann and ii(bitumino of rs 4.2 lakhs p ks at the end of er km	f 5 ual ous oer		
	4				ents of quant to highway de		d non quantifial t	ble		

b. Assignment – 3

			Mc	del Assignme	nt Questior	าร				
Crs Code:	17cv63	Sem:	VI	Marks:	5/10	Time:	75 Minute	75 Minutes		
Course:	Highway	engineerir	ng			·				
SNo			Assigr	nment Descrip	otion		Marks	со	Level	
1	What are	the requir	ements of	highway drair	nage syster	n	06	CO5	L3	
2	Describe various methods of economics analysis of a highway					05	CO6	L3		
17CV63					(Copyright ©201	7. cAAS. All right	s reserve	ed.	

3	Discuss the various components of quantifiable and non quantifiable benefits to the road users due to highway development	06	CO5	L4
4.	The maximum quantity of water expected in longitudinal drains on clayey soil is 0.9m3/sec design the cross section and longitudinal slope of trapezoidal drain assuming the bottom width of the trapezoidal section to be 1 m and cross slope to be 1 vertical to 1.5 horizontal. The allowable velocity of flow in the drain is 1.2m/sec and manning's roughness coefficient is 0.02	08	CO6	L5

F. EXAM PREPARATION

1. University Model Question Paper

Cours			/ Year	May /	
Crs C	ode:	17cv63 Sem: VI Marks: 80 Time:		180 m	
Mod ule		Answer all FIVE full questions. All questions carry equal marks.	Marks	со	Level
1	а	Classify the roads in India based on location and function and explain ar two	у 5	C01	L2
	b	What are the Characteristics of road transport	5	CO1	L3
	С	The area of a district is 8400 km ² . There are 9 towns with populatic greater than 5000. Calculate the length of NH, SH, MDR, ODR & VR as pa 3rd 20 year road plan.		C01	L4
		Or			
	а	Classify the roads in India based on location and function and explain ar two	у 5	C01	L2
	b	What are the Characteristics of road transport	5	CO1	L3
	С	The area of a district is 8400 km ² . There are 9 towns with populatic greater than 5000. Calculate the length of NH, SH, MDR, ODR & VR as pa 3rd 20 year road plan.	n 6	C01	L4
2.	а	Explain with near sketches the various factors controlling the alignment	8	C02	L3
	b	What are the objectives of preliminary survey for highway alingment	8	C02	L2
		or			
	а	Derive an expression for finding the extra widening required on horizontal curve	8	C02	L4
	b	The speeds of overtaking and over taken vesicles are 70kmph and 40kmph respectively on a two way traffic road. The average acceleration during overtaking may be assumed as 0.99m/sec ² calculate safe overtaking sight distance and show the details of overtaking zone with sketches	8	CO2	L4
3	a	Explain how the wheel load and its repetition of loads effects the CC	08	co3	L3
	b	Write the requirements of the joints in CC pavements OR	08	co3	L3
				000	
	a	Write in brief about the Design procedure of C.C. Pavement as per IRC: 38 –2002		co3	L3
	b	Explain with a neat sketch the mechanism of mud pumping in C pavement constructed on clayey strata. Indicate the remedial measures	C 08	co3	L3
4					
	a	Explain the average growth factor method with equation	08	C04	L3
	b	Define furness method of Trip Distribution with equation	08	C04	L3
		OR			

	a	Explain with near sketches the various factors controlling the alignment	06	co4	L2
	b	What are the objectives of preliminary survey for highway alingment	05	C04	L2
	С	Derive an expression for finding the extra widening required on horizontal curve	05	C04	L3
5	а	What are the requirements of highway drainage system	08	C05	L3
	b	Describe various methods of economics analysis of a highway	08	co6	L3
		or			
	а	Discuss the various components of quantifiable and non quantifiable benefits to the road users due to highway development	08	c05	L3
	b	The maximum quantity of water expected in longitudinal drains on clayey soil is 0.9m3/sec design the cross section and longitudinal slope of trapezoidal drain assuming the bottom width of the trapezoidal section to be 1 m and cross slope to be 1 vertical to 1.5 horizontal. The allowable velocity of flow in the drain is 1.2m/sec and manning's roughness coefficient is 0.02	08	co6	L4

2. SEE Important Questions

Cours		Highway engineering			Month	/ Year	July/ 2	2018
Crs C		17cv63 Sem:VI	Marks:	80	Time:			
		Answer all FIVE full questions	. All questions carry eq	ual marks.		-	-	
Mod ule	Qno.	mportant Question				Marks	со	Yea
1	а	What are the recommendatio committee	ns and implementatior	ns of Jayakar		06	C01	
	b	Explain the classification of U	rban roads			05	CO1	
	С	What are the different modes characteristic features of then		npare the		05	C01	
		or						
		write a note i) IRC ii) CRF				08	CO1	
		_ist the types of road pattern				08	CO1	
2	а	Explain with near sketches tl alignment	he various factors con	trolling the		08	C01	
	b	What are the objectives of p	reliminary survey for	highway aling	gment	08	CO1	
		or	, ,		,			
	а	Derive an expression for find norizontal curve	ling the extra widening	g required on		08	CO2	
	b	The speeds of overtaking an 40kmph respectively on a tw acceleration during overtaki calculate safe overtaking sig overtaking zone with sketch	vo way traffic road. The ng may be assumed a Jht distance and show	e average as 0.99m/sec	2	08	CO2	
3.	a	What are the desirable pr conducted for judging th significant of each test	operties of aggrega				co3	
	b	Briefly explain the role on the role on the second se		e characteri	stics in	08	co3	
			or					
	а	_ist and explain various fac	tors to be consider f	or pavement	S	08	co3	
	b	A Load penetration values of 6 sample are given below. Dete of load represents 190kg and oad dial readings , 0,8, 15,23,2	ermine the CBR value in the calibration chart	of soil if 100 (divisions		co3	
4	a	Explain the desirable prope	erties of subarade so	il		08	C04	

Page # 16 / 19

	b	Write a note on CBR	08	C04	
		Or			
	а	A plate load test was conducted on a soaked subgrade during monsoon season using a plate diameter of 30 cm. The load values corresponding to the mean settlement dial readings are given below. Determine the modulus of subgrade reaction for the standard plate.		C04	
	b	Enumerate the steps for the determination of modulus of subgrade reaction and for making corrections for plate size	08	C04	
5	а	What are the requirements of highway drainage system	08	C05	
	b	Describe various methods of economics analysis of a highway	08	co6	
		Or			
	a	Compare the annual costs of two types of pavement structures i(WBM with thin bituminous surface at total cost of rs 2.2 lakhs per km, life of 5 years, inetrest at 10%salvage value of rs 0.9 lakhs after 5 years annual average maintenance cost of rs 0.35 lakhs per km and ii(bituminous macadam and bituminous concrete surface total cost of rs 4.2 lakhs per km, life of 15 years, interest at 8%salvage value of 2 laks at the end of 15 years annual average maintenance cost rs 0.25 lakhs per km		c06	
	b	Discuss the various components of quantifiable and non quantifiable benefits to the road users due to highway development	08	со5	

Course Outcome Computation

Academic Year:

Odd /	' Even	semester
-------	--------	----------

eme															
			T1					Г	2				-	Гз	
CO		CO		CO		CO		CO		CO		C07		CO	
1		2		3		4		5		6				8	
Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV
: 3:>	60%	, 2:>=	50%	and <	:=60%	‰, 1: <	=49	%							
-			-												
	CO 1 Q1	CO 1 Q1 LV : 3:>60%	CO CO 1 2 Q1 LV Q2	T1 CO CO 1 2 Q1 LV Q2 LV : 3:>60%, 2:>=50%	CO CO CO 1 2 3 Q1 LV Q2 LV Q3	T1 CO CO CO 1 2 3 Q1 LV Q2 LV Q3 LV : 3:>60%, 2:>=50% and <=60%	T1 CO CO CO CO 1 2 3 4 Q1 LV Q2 LV Q3 LV Q1 : 3:>60%, 2:>=50% and <=60%, 1: <	T1 CO CO CO CO 1 2 3 4 Q1 LV Q2 LV Q3 LV Q1 LV : 3:>60%, 2:>=50% and <=60%, 1: <=49	T1 T1 CO CO CO CO CO 1 2 3 4 5 Q1 LV Q2 LV Q3 LV Q1 LV Q2 : 3:>60%, 2:>=50% and <=60%, 1: <=49%	T1 T2 CO CO CO CO CO 1 2 3 4 5 Q1 LV Q2 LV Q3 LV Q1 LV Q2 LV : 3:>60%, 2:>=50% and <=60%, 1: <=49%	T1 T2 CO CO CO CO CO CO 1 2 3 4 5 6 Q1 LV Q2 LV Q3 LV Q1 LV Q2 LV Q3 : 3:>60%, 2:>=50% and <=60%, 1: <=49% : 3:>60% :	T1 T2 CO CO CO CO CO CO 1 2 3 4 5 6 Q1 LV Q2 LV Q3 LV Q1 LV Q2 LV Q3 LV : 3:>60%, 2:>=50% and <=60%, 1: <=49% : 3:>60%	T1 T2 CO CO CO CO CO CO CO CO 1 2 3 4 5 6 Q1 LV Q2 LV Q3 LV Q1 LV Q2 LV Q3 LV Q1 : 3:>60%, 2:>=50% and <=60%, 1: <=49%	T1 T2 CO CO CO CO CO CO7 1 2 3 4 5 6 Q1 LV Q2 LV Q3 LV Q1 LV Q2 LV Q1 LV Si>60%, 2:>=50% and <=60%, 1: <=49% 2 2 2 2 2 2 3 <	T1 T2 T3 CO CO CO CO CO CO CO 1 2 3 4 5 6 8 8 9 1 LV Q2 LV Q3 LV Q1 LV Q2 LV Q3 LV Q1 LV Q2

PO Computation

Program	PO1	PO3	PO3	PO1	PO12	PO12	PO6	PO1
Outcome								
Weight of CO - PO	3	1	3	2	2	3	3	1
Course	CO1	CO2	CO3	CO4	CO5	CO6	CO7	CO8
Outcome			Ŭ		Ŭ			
Test/Quiz/L		T1			T2			Гз
ab								
QUESTION	Q1	L Q2 LV	Q3 LV	Q1 LV	Q2 LV	Q3 LV	Q1 LV	Q2 LV
NO		V						
MAX								
MARKS								
USN-1								
USN-2								
USN-3								
17CV63			_		Copyr	ight ©2017. cA	AS. All rights r	eserved.

USN-4
USN-5 USN-6
USN-6
Average CO Attainment
Attainment